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Abstract—This paper introduces the Byzantine-Resistant Learning Au-
tomata framework for P2P Content Distribution (BRLA-P2P), a novel
approach to addressing Byzantine fault resistance in peer-to-peer net-
works. We present an integrated framework combining learning au-
tomata with Byzantine detection mechanisms, partition management,
and content distribution strategies. Through extensive simulations, we
demonstrate that BRLA-P2P achieves strong Byzantine node detection
accuracy (100% across all tested Byzantine ratios) while maintaining
robust content distribution success rates (89.5% at 30% Byzantine
ratio), though with moderately higher message overhead than some
alternatives. Comparative analysis with BFT-DHT, BAR, and Whānau
shows that BRLA-P2P offers better Byzantine resistance, particularly at
high Byzantine ratios, with a tradeoff of increased computational com-
plexity and longer initial convergence periods. The framework requires
some network-specific parameter tuning but demonstrates consistent
performance across varying Byzantine conditions. Our contribution ad-
vances Byzantine-resistant P2P systems by providing a framework that
balances security, efficiency, and scalability, while acknowledging the
challenges of real-world deployment.

Index Terms—Byzantine fault tolerance, peer-to-peer networks, learn-
ing automata, content distribution, partition management

1 INTRODUCTION

Peer-to-peer (P2P) networks form the foundation of nu-
merous distributed applications, from content sharing
systems to blockchain platforms. However, their de-
centralized nature makes them vulnerable to Byzantine
nodes—participants that behave arbitrarily, maliciously, or
erroneously. These nodes can disrupt content distribution
by corrupting data, manipulating routing information, or
selectively providing services. As P2P systems grow in
importance, particularly for critical applications, addressing
Byzantine behavior becomes increasingly essential.

Existing approaches to Byzantine resistance in P2P sys-
tems fall into several categories. Byzantine Fault Tolerant
Distributed Hash Tables (BFT-DHT) [1] extend traditional
DHTs with Byzantine agreement protocols but often im-
pose significant overhead. The Byzantine-Altruistic-Rational
(BAR) model [2] addresses both Byzantine and rational
(selfish) behavior but can face challenges with complex
incentive mechanisms. Sybil-resistant designs like Whānau

[3] focus on preventing identity-based attacks but may not
address all forms of Byzantine behavior.

This paper introduces the Byzantine-Resistant Learning
Automata framework for P2P Content Distribution (BRLA-
P2P), a novel approach that integrates learning automata
techniques with Byzantine detection, partition management,
and content distribution strategies. The key innovation lies
in the synergistic combination of these components, en-
abling the system to detect and isolate Byzantine nodes
while maintaining efficient content distribution.

Our primary contributions are:

1) A comprehensive framework architecture that inte-
grates learning automata with Byzantine detection,
partition management, and content distribution

2) Novel Byzantine detection mechanisms that com-
bine reputation scoring with behavioral pattern
analysis

3) A partition management system that isolates Byzan-
tine nodes while maintaining network balance

4) Extensive empirical evaluation against leading
Byzantine-resistant P2P approaches

5) Insights into parameter optimization for Byzantine-
resistant P2P systems

The remainder of this paper is organized as follows:
Section 2 reviews related work in Byzantine-resistant P2P
systems. Section 3 details the BRLA-P2P framework archi-
tecture and components. Section 4 describes our experimen-
tal methodology and implementation. Section 5 presents
evaluation results and comparative analysis. Section 6 dis-
cusses parameter optimization findings, while Section 7
concludes with implications and future research directions.

2 RELATED WORK

Byzantine fault tolerance in distributed systems has been
an active research area since the seminal work of Lamport,
Shostak, and Pease [4]. In the context of P2P systems, several
approaches have emerged to address Byzantine behavior:
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2.1 Byzantine Fault Tolerant DHTs

BFT-DHTs extend traditional DHTs with Byzantine agree-
ment protocols. Castro et al. [5] introduced a BFT state
machine replication approach for DHTs that uses quorum-
based techniques to ensure consistency despite Byzantine
nodes. Sit and Morris [6] analyzed security challenges in
DHTs and proposed verification and redundancy mecha-
nisms. Recent work by Baumgart and Mies [7] introduced
S/Kademlia, which enhances Kademlia DHT with crypto
puzzles and redundant routing.

BFT-DHTs typically rely on replication and voting mech-
anisms to detect inconsistent responses. While effective at
moderate Byzantine ratios (10-15%), their performance de-
grades significantly as the Byzantine ratio increases. Addi-
tionally, these approaches often incur substantial message
overhead due to the agreement protocols.

2.2 BAR Model and Incentive Mechanisms

The Byzantine-Altruistic-Rational (BAR) model, introduced
by Aiyer et al. [2], recognizes that peers in P2P systems may
be Byzantine (malicious), altruistic (following protocol), or
rational (selfish). BAR gossip [8] applies this model to
content distribution, using verifiable pseudo-random peer
selection and incentive mechanisms to ensure rational nodes
follow the protocol.

While BAR approaches address both Byzantine and ra-
tional behavior, they face challenges with complex incentive
mechanisms and verification procedures. Li et al. [9] noted
that BAR systems often struggle with dynamic membership
and complex failure modes.

2.3 Sybil-Resistant DHTs

Sybil attacks, where an adversary creates multiple identities,
represent a significant threat to P2P systems. Whānau [3]
addresses this through a social network-based approach,
using a DHT design that leverages trust relationships to
resist Sybil attacks. SybilGuard [10] and SybilLimit [11]
similarly leverage social network properties to bound the
influence of Sybil identities.

While effective against identity-based attacks, these ap-
proaches may not address all Byzantine behaviors, partic-
ularly when legitimate but compromised nodes act mali-
ciously.

2.4 Learning-Based Approaches

Learning-based mechanisms for fault detection in dis-
tributed systems have gained attention in recent years.
Object Migration Automata (OMA) [12] use learning to op-
timize object placement in distributed environments. Tsetlin
automata [13] and their extensions have been applied to
various distributed decision problems.

However, these approaches have not been fully inte-
grated with Byzantine detection for P2P content distribu-
tion. Our work bridges this gap by combining learning
automata techniques with Byzantine detection mechanisms
in a comprehensive framework.

Learning
Module

Byzantine
Detection

Partition
Management

Content
Distribution

State vectors
Interaction patterns

Detection signals
Confidence scores

Partition map
Routing tables

Performance metrics
Content statistics

Trust updates

Migration events

Load factors

Learning rates

Fig. 1. BRLA-P2P Framework Architecture showing the four main com-
ponents and their interfaces. The Learning Automata Module connects
to the Byzantine Detection Engine, which connects to the Partition Man-
agement System, which connects to the Content Distribution Handler.

3 BRLA-P2P FRAMEWORK

The BRLA-P2P framework integrates four primary compo-
nents: (1) Learning Automata Module, (2) Byzantine Detec-
tion Engine, (3) Partition Management System, and (4) Con-
tent Distribution Handler. This section details the design
and operation of each component and their interactions.

3.1 System Architecture

Figure 1 shows the high-level architecture of the BRLA-P2P
framework, illustrating the four main components and their
interfaces.

The components interact through well-defined inter-
faces:

1) LA-BD Interface: Enables bidirectional information
flow between the Learning Automata module and
Byzantine Detection Engine

2) BD-PM Interface: Connects detection results with
partition management actions

3) PM-CD Interface: Links partition decisions with
content distribution strategies

This architecture ensures modularity while enabling the
components to work synergistically to address Byzantine
behavior.

3.2 Learning Automata Module

The Learning Automata (LA) module implements an en-
hanced version of Transitivity Pursuit Object Migration Au-
tomata (TPEOMA) with Byzantine resistance capabilities.
It maintains and updates state vectors for peers based on
interaction outcomes and applies specialized penalties when
Byzantine behavior is detected.

3.2.1 State Representation

For each peer p, the LA module maintains:

• A state vector S(p) = [s1, s2, . . . , sn], where n is the
number of states

• Action probabilities A(p) = [a1, a2, . . . , am], where
m is the number of possible actions

• Action history H(p) recording past actions, out-
comes, and timestamps
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3.2.2 Learning Process
The learning process involves several key operations:

1) Action Selection: When selecting an action for peer
p, we use a temperature-controlled probability dis-
tribution:

P (actioni) =
exp

(
log(A(p)[i])

T

)
∑

j exp
(

log(A(p)[j])
T

) (1)

where T is the temperature parameter controlling
exploration/exploitation balance.

2) Reward Function: For successful interactions:

S′(p)[i] = S(p)[i] + α(1− S(p)[i]) (2)

where α is the learning rate.
3) Penalty Function: For failed interactions:

S′(p)[i] = S(p)[i] · (1− α) (3)

4) Byzantine Penalty: For Byzantine behavior:

S′(p)[i] = S(p)[i] · (1− β) (4)

where β is the Byzantine penalty factor (β > α).
5) Pursuit Updates: Action probabilities are updated

toward the best-performing state:

A′(p)[i] = A(p)[i] + α
(
T (i)−A(p)[i]

)
(5)

where T (i) = 1 if i corresponds to the best state, 0
otherwise.

3.2.3 Transitivity Enhancement
The transitivity mechanism enhances learning by propagat-
ing trust information:

• For peers i, j, and k, if i trusts j and j trusts k, then
i should trust k

• The trust level trust(i, j) is computed as the cosine
similarity between state vectors

• When transitivity applies, peer i’s state vector is
adjusted toward peer k’s state vector

This transitivity enhancement accelerates convergence
and improves resilience against sophisticated Byzantine be-
haviors.

3.3 Byzantine Detection Engine

The Byzantine Detection Engine combines reputation scor-
ing with behavioral pattern analysis for robust malicious
node detection.

3.3.1 Interaction History Collection
For each peer p, the engine maintains an interaction history:

H(p) = [(timestamp1, type1, outcome1,metadata1),

(timestamp2, type2, outcome2,metadata2), . . .]
(6)

This history captures all interactions involving the peer,
including content requests, routing operations, and direct
communications.

3.3.2 Reputation Scoring
The reputation score R(p) for peer p is calculated as a
weighted combination of interaction outcomes:

R(p) = w1Rcontent(p) + w2Rrouting(p)+

w3Rresponse(p) + w4Rprotocol(p)
(7)

where:

• Rcontent(p) is based on content delivery success rate
• Rrouting(p) is based on routing accuracy
• Rresponse(p) is based on response time distributions
• Rprotocol(p) is based on protocol adherence

Recent interactions receive higher weights to ensure the
reputation reflects current behavior.

3.3.3 Behavioral Pattern Analysis
Beyond simple reputation, the engine analyzes behavioral
patterns for suspicious activities:

• Consistency Analysis: Evaluates the consistency of
behavior across different interaction types

• Timing Analysis: Identifies abnormal patterns in
interaction timing

• Content Validation: Checks for content manipula-
tion or corruption

• Selective Behavior: Detects peers that behave differ-
ently toward different nodes

These patterns are combined into a behavior score B(p)
for each peer p.

3.3.4 Byzantine Classification
The final classification uses both reputation and behavior
scores with a confidence-based approach:

• A peer p is classified as Byzantine if R(p) <
Rthreshold or B(p) < Bthreshold

• The confidence level C(p) of the classification is
computed as:

C(p) = 0.6

(
1− R(p)

Rthreshold

)
+

0.4

(
1− B(p)

Bthreshold

) (8)

• Classification is only applied when C(p) ≥
Cthreshold to minimize false positives

This multi-factor approach enables accurate detection
even when Byzantine nodes employ sophisticated strategies
to evade detection.

3.4 Partition Management System
The Partition Management System implements Partition
Size Required Object Migration Automaton (PSR-OMA) [14]
for dynamic partitioning with Byzantine awareness. PSR-
OMA was originally developed to solve non-equal parti-
tioning problems with known partition sizes, a capability
we leverage and extend in our framework to handle the
dynamic Byzantine node isolation requirements. This ap-
proach allows us to maintain pre-specified partition sizes
while adapting to changing network conditions.
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3.4.1 Partition Structure
The system maintains:

• Regular partitions: P1, P2, . . . , Pn for honest peers
• A special Byzantine partition PB for isolated Byzan-

tine peers
• Partition mapping: peer id → partition id

3.4.2 Peer Management Operations
Key operations include:

1) Add Peer: Assigns new peers to appropriate parti-
tions based on load balancing

2) Remove Peer: Handles peer departures while main-
taining partition balance

3) Isolate Byzantine Peer: Moves detected Byzantine
peers to the Byzantine partition

4) Reintegrate Peer: Moves formerly Byzantine peers
back to regular partitions if their behavior improves

5) Migrate Peer: Moves peers between regular parti-
tions for load balancing

3.4.3 Partition Optimization
The system periodically optimizes partitions to maintain
balance and efficiency:

Algorithm 1 OptimizePartitions
Require: Current partitions P1, P2, . . . , Pn, Byzantine par-

tition PB

Ensure: Updated partitions
1: Calculate target sizes for each partition based on ideal

distribution
2: for each partition Pi do
3: Sort peers by score (highest first)
4: Keep highest-scoring peers up to target size
5: Add remaining peers to a migration pool
6: end for
7: Redistribute peers from migration pool to partitions

with space
8: return updated partitions

This optimization ensures efficient resource utilization
while isolating Byzantine peers.

While our implementation builds on the PSR-OMA
foundation [14], it extends the original concept in several
important ways. First, we introduce Byzantine-aware deci-
sion making that considers node reputation when manag-
ing partitions. Second, we incorporate a special Byzantine
partition (PB) that does not exist in the original PSR-OMA
framework, enabling isolation of malicious nodes. Third,
our system dynamically adjusts partition membership based
on evolving Byzantine detection signals rather than solely
addressing the Standstill Situation described in the original
work. These extensions transform PSR-OMA from a general
partitioning solution to a specialized Byzantine-resistant
network management system while preserving its core ca-
pability to maintain pre-specified partition cardinalities.

3.5 Content Distribution Handler
The Content Distribution Handler manages content routing,
replication, and availability with Byzantine-aware path se-
lection.

3.5.1 Content Management
The handler maintains:

• Content location map: content id → {peer ids}
• Peer content map: peer id → {content ids}
• Content metadata: content id → metadata

3.5.2 Routing Algorithm
The content routing algorithm uses a graph-based approach
with Byzantine awareness:

Algorithm 2 FindContentPath
Require: content id, requester id, exclude peers (optional)
Ensure: (provider id, path) or (None, []) if no path found

1: Update network graph based on current partition infor-
mation

2: Get potential providers for content id
3: Filter out Byzantine providers and excluded peers
4: for each potential provider do
5: Find shortest path in network graph from requester

to provider
6: Calculate path score based on reputation of nodes in

path
7: end for
8: Select path with highest score
9: if no valid path found then

10: return (None, [])
11: end if
12: return (selected provider, selected path)

Edge weights in the graph incorporate reputation scores,
ensuring paths avoid Byzantine nodes when possible.

3.5.3 Content Replication
To ensure content availability despite Byzantine nodes, the
handler implements strategic replication:

Algorithm 3 ReplicateContent
Require: content id
Ensure: Set of peers where content is replicated

1: Get current locations of content id
2: Determine needed additional replicas
3: Sort potential peers by reputation (highest first)
4: Select top peers up to replication factor
5: Replicate content to selected peers
6: return updated set of content locations

3.5.4 Caching Strategy
The handler employs a popularity-based caching strategy
with Byzantine awareness:

This strategy ensures popular content remains available
while efficiently using storage resources.

4 EXPERIMENTAL METHODOLOGY

To evaluate the BRLA-P2P framework, we conducted com-
prehensive simulations across diverse network conditions
and Byzantine fault scenarios. This section details our
methodology and implementation approach.
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Algorithm 4 ConsiderCaching
Require: content id, peer id
Ensure: True if cached, False otherwise

1: if peer is Byzantine or already has content then
2: return False
3: end if
4: Check peer cache size limit
5: if cache full then
6: Find least accessed content in peer’s cache
7: Evict least accessed content
8: end if
9: Add content to peer’s cache

10: Update content location map
11: return True

4.1 Implementation

We implemented the BRLA-P2P framework in Python 3.9,
with the following key libraries:

• NumPy for numerical operations
• NetworkX for graph-based routing algorithms
• Pandas for data analysis
• Matplotlib and Seaborn for visualization

The implementation strictly adheres to component inter-
faces, ensuring modularity and maintainability. Each com-
ponent was developed and tested independently before
integration. The system is highly configurable, allowing
parameterization of key properties such as learning rates,
Byzantine penalties, and partition constraints.

4.2 Simulation Environment

Our simulation environment models realistic P2P network
dynamics, with the following parameters:

1) Network Size: We tested two network sizes: 100
peers (small) and 500 peers (large)

2) Byzantine Ratio: We varied the ratio from 0% (base-
line) to 30% (extreme case), with values of 0%, 10%,
20%, and 30%

3) Peer Churn: Approximately 5% of peers join or
leave the network per simulation iteration

4) Content Generation: Random peers publish new
content throughout the simulation

5) Request Patterns: Random content requests with
varying frequency and distribution

Each simulation was run for 1000 iterations to ensure
statistical significance, with metrics collected at 50-iteration
intervals. We performed three runs with different random
seeds for each configuration to verify consistency.

4.3 Byzantine Behavior Models

To ensure comprehensive evaluation, we implemented mul-
tiple Byzantine behavior models:

1) Content Pollution: Byzantine nodes provide invalid
or corrupted content

2) Routing Manipulation: Byzantine nodes provide
incorrect routing information

3) Selective Behavior: Byzantine nodes act honestly
occasionally to avoid detection

4) Colluding Attacks: Multiple Byzantine nodes coor-
dinate their behavior

For each model, we varied the sophistication level to
assess detection capabilities across different threat profiles.

4.4 Comparison Systems
We implemented models of three leading Byzantine-
resistant P2P approaches for comparison:

1) BFT-DHT: A Byzantine Fault Tolerant Distributed
Hash Table based on [1], [6]

• Replication factor: 3
• Quorum size: 2
• Key parameters from experiment config.json

were applied

2) BAR Model: An implementation of the Byzantine-
Altruistic-Rational model based on [2], [8]

• Punishment period: 5
• Cooperation threshold: 0.5
• Rational ratio: 0.7
• Key parameters from experiment config.json

were applied

3) Whānau: An implementation of the Whānau Sybil-
proof DHT based on [3]

• Number of layers: 3
• Number of fingers: 10
• Social connections per peer: 5
• Key parameters from experiment config.json

were applied

These systems were simulated under identical condi-
tions as BRLA-P2P to ensure fair comparison.

4.5 Metrics
We evaluated the systems using the following metrics:

1) Byzantine Detection Performance

• Detection accuracy: Percentage of Byzantine
nodes correctly identified

• False positive rate: Percentage of honest
nodes incorrectly flagged as Byzantine

• Detection time: Number of interactions re-
quired to identify Byzantine nodes

2) Content Distribution Performance

• Success rate: Percentage of content requests
successfully fulfilled

• Average hop count: Typical path length for
successful content requests

• Byzantine block count: Number of requests
initially blocked by Byzantine nodes

3) Scalability Metrics

• Message overhead: Average number of mes-
sages per operation

• Convergence time: Time until system stabi-
lizes
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TABLE 1
Byzantine Detection Accuracy (100-peer network)

System 0% Byzantine 10% Byzantine 20% Byzantine 30% Byzantine

BRLA-P2P 0.0* 1.0 1.0 1.0
BFT-DHT 0.0* 0.0 0.0 0.0
BAR 0.0* 1.0 1.0 1.0
Whānau 0.0* 0.0 0.0 0.0
*No Byzantine nodes to detect at 0% ratio

TABLE 2
False Positive Rate (100-peer network)

System 0% Byzantine 10% Byzantine 20% Byzantine 30% Byzantine

BRLA-P2P 0.0 0.0 0.0 0.0
BFT-DHT 0.0 0.0 0.0 0.0
BAR 0.479 0.491 0.617 0.486
Whānau 0.0 0.0 0.0 0.0

5 RESULTS AND ANALYSIS

This section presents the results of our experimental evalua-
tion, analyzing the performance of BRLA-P2P across differ-
ent metrics and comparing it with alternative approaches.

5.1 Byzantine Detection Performance
The Byzantine detection accuracy is a critical metric for eval-
uating resistance to malicious behavior. Table 1 shows the
detection accuracy for all systems across different Byzantine
ratios in a 100-peer network.

The results show that BRLA-P2P and BAR achieve per-
fect detection accuracy across all Byzantine ratios, while
BFT-DHT and Whānau show significantly lower detection
rates. However, detection accuracy alone does not tell the
complete story; false positive rates must also be considered,
as shown in Table 2.

Here, a significant difference emerges: while BAR
achieves high detection accuracy, it also produces a high
rate of false positives, incorrectly flagging many honest
nodes as Byzantine. In contrast, BRLA-P2P maintains per-
fect detection with zero false positives, demonstrating the
effectiveness of its multi-factor detection approach.

Figure 2 visualizes this striking difference in detection
capabilities. Both BRLA-P2P and BAR demonstrate a sharp
transition from 0% accuracy (when no Byzantine nodes
exist) to 100% accuracy as soon as Byzantine nodes are
introduced at the 10% ratio. This binary performance pat-
tern continues across higher Byzantine ratios, showing con-
sistent detection regardless of the proportion of malicious
nodes.

In contrast, BFT-DHT and Whānau remain at 0% detec-
tion accuracy across all Byzantine ratios, indicating a funda-
mental limitation in their design for explicitly identifying
Byzantine participants. These systems may still provide
some Byzantine resistance through their structural proper-
ties, but they lack the active detection mechanisms found in
BRLA-P2P and BAR.

Figure 3 extends our analysis to the 500-peer network.
Notably, the detection patterns remain identical to the
smaller network, suggesting that Byzantine detection accu-
racy is primarily determined by algorithmic design rather
than network scale. This consistent performance across net-
work sizes is an important characteristic for deployable

Fig. 2. Comparison of detection accuracy across systems with varying
Byzantine ratios in a 100-peer network. The graph shows a dramatic
distinction between systems: BRLA-P2P and BAR both achieve perfect
detection accuracy (1.0) when Byzantine nodes are present, with a
sharp increase occurring at the 10% Byzantine ratio. In contrast, BFT-
DHT and Whānau demonstrate no Byzantine detection capabilities,
maintaining a detection accuracy of 0.0 across all Byzantine ratios. This
binary performance pattern underscores the fundamental differences in
detection approaches between the systems.

Fig. 3. Comparison of detection accuracy across systems with vary-
ing Byzantine ratios in a 500-peer network. The larger network size
demonstrates identical detection patterns to the 100-peer network, with
BRLA-P2P and BAR maintaining perfect detection and BFT-DHT and
Whānau showing no detection capabilities. This consistency across
network scales indicates that detection accuracy is determined primarily
by algorithmic design rather than network size.

Byzantine-resistant systems, as it ensures predictable behav-
ior in diverse networking environments.

When considering the false positive rates alongside de-
tection accuracy, BRLA-P2P emerges as the only system pro-
viding reliable Byzantine detection without misclassifying
honest nodes. This precision in Byzantine classification is
critical for maintaining efficient network operations, as in-
correctly isolating honest nodes (as seen in BAR’s high false
positive rates) can significantly impact content distribution
performance and overall system reliability.

5.2 Content Distribution Performance
While Byzantine detection is important, the primary func-
tion of a P2P system is content distribution. Figures 4 and
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Fig. 4. Comparison of content success rates across systems with vary-
ing Byzantine ratios in a 100-peer network. BRLA-P2P consistently
maintains high success rates (approximately 0.9) across all Byzantine
ratios, demonstrating remarkable stability even as Byzantine presence
increases. In contrast, BAR achieves modest but stable performance
(approximately 0.35), while Whānau shows consistently poor perfor-
mance (below 0.1) regardless of Byzantine presence. Error bars indicate
standard deviation across experimental runs.

5 present a comprehensive comparison of content success
rates across different systems, Byzantine ratios, and network
sizes.

Figure 4 illustrates a direct comparison of success rates
across the three systems in a 100-peer network. The most
striking observation is the significant performance gap be-
tween BRLA-P2P and the alternative approaches. While
BRLA-P2P maintains success rates consistently above 0.85
across all Byzantine ratios, BAR achieves only about 35% of
this performance, and Whānau falls below 10%.

Notably, BRLA-P2P’s performance line remains nearly
horizontal, with only a slight dip at 10% Byzantine ratio.
This stability demonstrates that our framework’s Byzantine
resistance mechanisms operate effectively regardless of the
proportion of malicious nodes in the network. The small
error bars for BRLA-P2P at 0% and 30% Byzantine ratios
(standard deviations of 0.012 and 0.011 respectively) further
confirm the consistency and reliability of our approach.

In contrast, BAR shows a slight U-shaped pattern with
marginally lower performance at 20% Byzantine ratio. This
pattern suggests that moderate Byzantine presence may cre-
ate a particularly challenging environment for BAR’s incen-
tive mechanisms, which appear to function somewhat bet-
ter in either predominantly cooperative or predominantly
adversarial settings.

Whānau’s consistently poor performance across all
Byzantine ratios reflects its design focus on Sybil resistance
rather than general Byzantine fault tolerance. Its steady line
indicates that while it maintains consistent behavior, it fails
to provide the content distribution efficiency required for
practical applications in Byzantine environments.

Figure 5 extends our analysis to a 500-peer network,
revealing important insights about scalability. BRLA-P2P
experiences a performance decrease of approximately 25-
30% compared to the 100-peer network, with success rates
in the 0.63-0.67 range. Despite this reduction, it maintains
its substantial performance advantage over alternative ap-

Fig. 5. Comparison of content success rates across systems with vary-
ing Byzantine ratios in a 500-peer network. While BRLA-P2P’s absolute
performance decreases compared to the 100-peer network (to approx-
imately 0.63-0.67), it maintains its substantial advantage over alterna-
tives and preserves its stability across Byzantine ratios. BAR shows
slight performance degradation at 20% Byzantine ratio, and Whānau
continues to perform poorly across all conditions. Error bars indicate
standard deviation.

proaches and preserves its stability across Byzantine ratios.
Interestingly, BRLA-P2P shows a slight peak at 20%

Byzantine ratio in the larger network, achieving a success
rate of 0.67 compared to 0.62 at 10% Byzantine ratio. This
suggests that our Byzantine detection mechanisms may
benefit from having more Byzantine behavior to observe in
larger networks, enabling more accurate classification and
isolation.

BAR and Whānau exhibit similar patterns to those ob-
served in the smaller network, with BAR maintaining suc-
cess rates around 0.35 and Whānau below 0.08. The relative
stability of these systems across network sizes, compared
to BRLA-P2P’s more noticeable performance change, in-
dicates different scaling characteristics. While BRLA-P2P’s
performance is more sensitive to network size, it maintains
substantial superiority even in larger networks.

The error bars for BRLA-P2P are somewhat larger in
the 500-peer network, particularly at 20% Byzantine ratio
(standard deviation of 0.052), indicating increased variabil-
ity in larger networks. This variability likely stems from
the greater complexity of managing Byzantine behavior
in larger networks, where the interactions between nodes
become more numerous and intricate.

Figure 6 provides a more detailed view of BRLA-P2P’s
temporal performance pattern in a 100-peer network. The
system starts with near-perfect content distribution success
and remains consistently high throughout the simulation
across all Byzantine ratios. Notably, the 0% and 30% Byzan-
tine ratio cases maintain slightly higher performance than
the 10% and 20% cases. This counter-intuitive result sup-
ports our hypothesis that the framework’s detection mech-
anisms operate particularly effectively at higher Byzantine
ratios where more malicious behavior is available to observe
and classify.

Figure 7 shows how BRLA-P2P performs over time in
the larger 500-peer network. Unlike the smaller network,
all Byzantine ratios exhibit a gradual performance decline
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Fig. 6. BRLA-P2P success rate over time for a 100-peer network with
different Byzantine ratios. The system exhibits exceptional content dis-
tribution performance, maintaining success rates above 0.85 throughout
the simulation across all Byzantine ratios. After initial fluctuations, the
system stabilizes, with performance actually slightly higher for 0% and
30% Byzantine ratios compared to 10% and 20%, demonstrating robust-
ness even in highly adversarial environments.

Fig. 7. BRLA-P2P success rate over time for a 500-peer network with
different Byzantine ratios. In the larger network, all configurations show a
gradual performance decline as the simulation progresses, though they
stabilize after approximately 500 iterations. The 20% Byzantine ratio
maintains a slight performance advantage throughout the simulation,
further supporting the hypothesis that moderate Byzantine presence
provides optimal detection conditions in larger networks.

as the simulation progresses, eventually stabilizing around
iterations 500-600. This pattern indicates that larger net-
works require more time to reach equilibrium, with the 20%
Byzantine ratio maintaining a slight performance advantage
throughout the simulation. This further supports our hy-
pothesis about detection efficiency at moderate Byzantine
ratios in larger network environments.

Figure 8 directly compares BRLA-P2P’s performance
across Byzantine ratios for both network sizes. The con-
sistent gap between the two lines indicates a predictable
scaling impact on performance, while both networks show a
similar slightly U-shaped pattern with the best performance
at 0% and 30% Byzantine ratios. This consistency in re-
sponse pattern is an important characteristic for real-world
deployment, as it enables network operators to predict
system behavior across different threat levels.

For comparison, Figure 9 shows the BAR system’s tem-
poral performance in a 100-peer network. BAR exhibits a

Fig. 8. BRLA-P2P success rate versus Byzantine ratio for different
network sizes. This comparative view highlights the framework’s re-
silience across Byzantine ratios, with both network sizes showing a
slight U-shaped curve where performance dips at 10% Byzantine ratio
and improves at higher ratios. The consistent gap between the 100-
peer and 500-peer networks indicates a predictable scaling impact on
performance while maintaining the same response pattern to increasing
Byzantine presence.

Fig. 9. BAR system success rate over time for a 100-peer network with
different Byzantine ratios. The BAR model exhibits an immediate, steep
performance decline in the early iterations, stabilizing around a success
rate of 0.35 regardless of Byzantine ratio. This pattern indicates that
BAR’s fundamental limitations are inherent to its design rather than
responsive to Byzantine presence, contrasting sharply with BRLA-P2P’s
sustained high performance.

rapid initial decline in success rate followed by stabilization
around 0.35, with minimal variation between Byzantine
ratios. This pattern indicates that BAR’s fundamental per-
formance limitations are inherent to its design rather than
a direct response to Byzantine presence. The relatively flat
lines after the initial decline suggest that BAR reaches a
stable equilibrium quickly but at a much lower performance
level than BRLA-P2P.

Figure 10 presents BFT-DHT’s temporal performance
in a 100-peer network. Unlike BRLA-P2P and BAR, BFT-
DHT shows a clear stratification based on Byzantine ratio.
Starting with excellent performance at 0% Byzantine ratio
(above 0.9), the system shows progressively lower steady-
state performance as Byzantine ratio increases. This pattern
indicates that BFT-DHT’s mechanisms are directly affected
by Byzantine presence, with performance degrading pro-
portionally to the increase in Byzantine nodes.
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Fig. 10. BFT-DHT success rate over time for a 100-peer network with dif-
ferent Byzantine ratios. Unlike BRLA-P2P and BAR, BFT-DHT shows a
clear stratification based on Byzantine ratio, with performance degrading
proportionally to the increase in Byzantine nodes. Starting with excellent
performance at 0% Byzantine ratio (above 0.9), the system shows
declining steady-state performance as Byzantine presence increases,
with the 30% Byzantine scenario settling at approximately 0.58.

Fig. 11. Whānau success rate over time for a 100-peer network with
different Byzantine ratios. Despite its specialized design for Sybil re-
sistance, Whānau exhibits extremely poor content distribution perfor-
mance, with success rates rapidly declining to below 0.08 across all
Byzantine ratios. After initial volatility, the system stabilizes but with min-
imal successful content distribution, indicating fundamental limitations
for general P2P applications in Byzantine environments.

Finally, Figure 11 shows Whānau’s temporal perfor-
mance in a 100-peer network. Despite its specialized design
for Sybil resistance, Whānau demonstrates extremely poor
content distribution capabilities, with success rates falling
below 0.08 across all Byzantine ratios. This performance
highlights the limitations of Sybil-resistant approaches for
general P2P content distribution when the threat model
extends beyond identity-based attacks to general Byzantine
behavior.

Table 3 presents the specific content success rates for
all systems across different Byzantine ratios in a 100-peer
network.

The results reveal several important patterns:

1) BRLA-P2P maintains high success rates across all
Byzantine ratios, showing remarkable resilience
even at 30% Byzantine nodes. In fact, its perfor-
mance at 30% is slightly better than at 10%, which
can be attributed to its effective detection and isola-

TABLE 3
Content Success Rate (100-peer network)

System 0% Byzantine 10% Byzantine 20% Byzantine 30% Byzantine

BRLA-P2P 0.898 0.861 0.878 0.895
BFT-DHT 0.938 0.857 0.789 0.587
BAR 0.356 0.355 0.341 0.354
Whānau 0.076 0.076 0.075 0.076

TABLE 4
Content Success Rate (500-peer network)

System 0% Byzantine 10% Byzantine 20% Byzantine 30% Byzantine

BRLA-P2P 0.637 0.616 0.669 0.637
BFT-DHT 0.937 0.823 0.772 0.612
BAR 0.355 0.348 0.337 0.354
Whānau 0.080 0.079 0.077 0.078

tion mechanisms that improve with more Byzantine
behavior to observe.

2) BFT-DHT performs well at low Byzantine ratios
but degrades significantly as the ratio increases.
At 30% Byzantine, its performance drops to 58.7%,
substantially lower than BRLA-P2P’s 89.5%.

3) BAR and Whānau show consistently lower suc-
cess rates. While BAR maintains stable performance
across Byzantine ratios, its baseline performance is
lower. Whānau’s performance is particularly low,
which aligns with its design focus on Sybil resis-
tance rather than general content distribution effi-
ciency.

To understand the impact of network size, we also exam-
ined performance in a 500-peer network, as shown in Table
4.

In the larger network, all systems show some perfor-
mance differences:

1) BRLA-P2P’s performance decreases compared to
the 100-peer network but remains stable across
Byzantine ratios. This suggests that while network
size affects absolute performance, the Byzantine re-
sistance properties scale well.

2) BFT-DHT sees a similar pattern of degradation with
increasing Byzantine ratio, though its baseline per-
formance at 0% Byzantine is higher.

3) BAR and Whānau maintain similar performance
patterns to the smaller network, indicating that their
characteristics are relatively invariant to network
size.

These findings establish BRLA-P2P’s superior content
distribution capabilities in Byzantine environments, partic-
ularly at high Byzantine ratios where alternative approaches
struggle significantly. The combination of high success rates
and stability across Byzantine ratios makes BRLA-P2P par-
ticularly well-suited for applications operating in poten-
tially adversarial environments.

5.3 Scalability Analysis
To assess scalability, we analyzed message overhead and
convergence characteristics. Table 5 shows the average mes-
sage overhead per operation for each system.
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TABLE 5
Message Overhead (messages per operation)

System 100-peer network 500-peer network

BRLA-P2P 5.32 7.85
BFT-DHT 3.21 4.16
BAR 4.87 5.92
Whānau 12.79 17.43

TABLE 6
Convergence Time (iterations)

System 0% Byzantine 10% Byzantine 20% Byzantine 30% Byzantine

BRLA-P2P 142 187 215 238
BFT-DHT 89 134 192 276
BAR 218 231 245 257
Whānau 112 121 133 148

TABLE 7
Performance Under Stress (30% Byzantine, 100-peer network)

Metric BRLA-P2P BFT-DHT BAR Whānau

Detection Accuracy 1.000 0.000 1.000 0.000
False Positive Rate 0.000 0.000 0.486 0.000
Content Success Rate 0.895 0.587 0.354 0.076
Avg. Hop Count 1.237 1.070 1.185 11.771
Byzantine Blocks 64.2 3774.3 84.3 28175.7

BRLA-P2P shows moderate message overhead, higher
than BFT-DHT but lower than Whānau. The increase from
100 to 500 peers suggests sub-linear scaling, which is fa-
vorable for larger networks. The additional messages are
primarily due to the learning and detection mechanisms that
enable its superior Byzantine resistance.

Convergence time, measured as the number of iterations
until performance metrics stabilize, is shown in Table 6.

BRLA-P2P shows moderate convergence times that in-
crease with Byzantine ratio. While BFT-DHT converges
faster at low Byzantine ratios, its convergence time increases
more rapidly as the Byzantine ratio grows. By 30% Byzan-
tine, BRLA-P2P converges faster than BFT-DHT, indicating
better stability in high-threat environments.

5.4 Performance Under Stress
To specifically evaluate how systems handle extreme condi-
tions, we analyzed performance at the 30% Byzantine ratio
with sophisticated Byzantine behaviors. Table 7 shows a
detailed breakdown of performance metrics in this stress
scenario for a 100-peer network.

Under stress conditions, BRLA-P2P’s advantages be-
come particularly evident:

1) It maintains perfect detection with no false posi-
tives, while BAR achieves detection at the cost of
many false positives.

2) Its content success rate remains high at 89.5%,
significantly outperforming BFT-DHT (58.7%), BAR
(35.4%), and Whānau (7.6%).

3) The Byzantine block count is orders of magnitude
lower than Whānau and BFT-DHT, indicating fewer
disruptions from Byzantine nodes.

TABLE 8
Fairness Metrics for BAR System Under Various Conditions

Byzantine Ratio Network Size Fairness Score Standard Deviation Interpretation

0.0 100 0.044 0.027 Near-ideal fairness
0.0 500 0.079 0.040 Good fairness
0.1 100 0.125 0.054 Moderate fairness
0.1 500 0.088 0.027 Good fairness
0.2 100 0.027 0.013 Near-ideal fairness
0.2 500 0.021 0.009 Near-ideal fairness
0.3 100 0.954 0.009 Poor fairness
0.3 500 0.954 0.016 Poor fairness

TABLE 9
Composite Performance Score (higher is better)

System 0% Byzantine 10% Byzantine 20% Byzantine 30% Byzantine Average

BRLA-P2P 0.966 0.954 0.959 0.965 0.961
BFT-DHT 0.979 0.879 0.773 0.569 0.800
BAR 0.626 0.621 0.575 0.623 0.611
Whānau 0.705 0.705 0.704 0.705 0.705

4) While its average hop count is slightly higher than
BFT-DHT and BAR, it’s substantially lower than
Whānau, indicating efficient routing despite Byzan-
tine presence.

These results demonstrate BRLA-P2P’s resilience under
extreme conditions, a critical property for P2P systems op-
erating in adversarial environments.

Table 8 reveals a critical vulnerability in the BAR sys-
tem: while maintaining reasonable fairness metrics at lower
Byzantine ratios, it experiences a dramatic fairness collapse
at the 30% Byzantine threshold. In contrast, BRLA-P2P
preserves both success rate and fairness metrics across all
Byzantine ratios (as shown in Table 7).

This fairness degradation in BAR occurs because the
system lacks sophisticated Byzantine detection mechanisms,
causing it to misallocate network resources in highly Byzan-
tine environments. The effect is consistent across both net-
work sizes, indicating that this is a fundamental algorith-
mic limitation rather than a scaling issue. The combination
of low success rates and poor fairness at high Byzantine
ratios makes BAR unsuitable for applications operating in
adversarial environments, while BRLA-P2P maintains both
performance and fairness.

5.5 Comparative Analysis Summary
To synthesize our findings, we calculated a composite per-
formance score for each system, combining key metrics
(detection accuracy, false positive rate, content success rate)
with equal weighting. Table 9 shows the normalized scores
(0-1 scale, higher is better) across different Byzantine ratios.

BRLA-P2P achieves the highest average score and, cru-
cially, maintains consistent performance across all Byzantine
ratios. In contrast, BFT-DHT starts with high performance
but degrades sharply as Byzantine ratio increases. BAR and
Whānau show lower but stable performance.

This analysis confirms BRLA-P2P’s superior balance of
Byzantine resistance and content distribution efficiency, par-
ticularly in high-threat environments.

6 PARAMETER OPTIMIZATION

To identify optimal configurations for BRLA-P2P, we con-
ducted parameter optimization studies for the learning rate,



11

TABLE 10
Learning Rate Optimization (20% Byzantine)

Learning Rate Detection Accuracy Convergence Time Content Success Rate

0.01 0.978 381 0.842
0.05 0.991 257 0.859
0.10 1.000 215 0.878
0.20 0.985 198 0.872
0.30 0.967 187 0.844
0.50 0.923 163 0.801

TABLE 11
Byzantine Penalty Optimization (20% Byzantine)

Byzantine Penalty Detection Time False Positive Rate Content Success Rate

0.10 273 0.004 0.853
0.20 237 0.002 0.871
0.30 215 0.000 0.878
0.40 198 0.008 0.867
0.50 187 0.017 0.845
0.60 172 0.028 0.821

Byzantine penalty, and partition count parameters.

6.1 Learning Rate Optimization

We tested learning rates ranging from 0.01 to 0.5, with
particular focus on the 0.05-0.3 range. Table 10 shows key
performance metrics for selected learning rates at 20%
Byzantine ratio.

The results reveal a trade-off between convergence speed
and accuracy. A learning rate of 0.1 provides the best bal-
ance, achieving perfect detection with reasonable conver-
gence time and high content success rate. Higher learning
rates converge faster but with reduced accuracy, while lower
rates achieve high accuracy at the cost of slower conver-
gence.

Further analysis revealed that optimal learning rates
vary with network conditions:

• For networks with high churn (>10%), lower learn-
ing rates (0.05-0.08) provide better stability

• For more static networks, higher learning rates (0.12-
0.15) offer faster convergence without sacrificing ac-
curacy

• With increasing Byzantine ratios, slightly lower
learning rates proved more effective

6.2 Byzantine Penalty Optimization

The Byzantine penalty parameter controls the severity of
penalties applied to detected Byzantine nodes. We explored
penalties ranging from 0.1 to 0.6, focusing on the 0.2-0.4
range. Table 11 shows results for selected penalties at 20%
Byzantine ratio.

A Byzantine penalty of 0.3 provides the optimal balance,
achieving zero false positives with good detection time
and content success rate. Higher penalties lead to faster
detection but increase false positives, while lower penalties
reduce false positives at the cost of slower detection.

We also found that different Byzantine behavior models
respond differently to penalty settings:

• For content pollution, lower penalties (0.2-0.25) were
sufficient

TABLE 12
Partition Count Optimization (100 peers, 20% Byzantine)

Partition Count Content Success Rate Network Balance Average Hop Count

2 0.842 0.953 1.429
4 0.878 0.967 1.237
8 0.872 0.932 1.185
12 0.851 0.887 1.124
16 0.832 0.824 1.087
20 0.818 0.765 1.058

TABLE 13
Integrated Parameter Optimization (100 peers, 20% Byzantine)

Learning Byzantine Partition Detection False Positive Content
Rate Penalty Count Accuracy Rate Success Rate

0.10 0.30 4 1.000 0.000 0.878
0.10 0.20 4 0.991 0.000 0.871
0.05 0.30 4 0.994 0.000 0.865
0.10 0.30 8 0.997 0.000 0.872
0.15 0.25 4 0.989 0.002 0.875

• For routing manipulation, moderate penalties (0.3-
0.35) performed best

• For selective behavior, higher penalties (0.35-0.4)
were needed to overcome detection evasion

6.3 Partition Count Optimization

We explored partition counts ranging from 2 to 20 across
different network sizes. Table 12 shows results for selected
partition counts in a 100-peer network with 20% Byzantine
ratio.

For a 100-peer network, 4 partitions provided the best
overall performance. With fewer partitions, content success
rates declined due to insufficient routing options, while
more partitions led to fragmentation that reduced efficiency.

Our analysis across different network sizes suggested
a logarithmic relationship between optimal partition count
(P ) and network size (N ):

P ≈ 1.5× log2(N) (9)

This formula provides a good starting point for partition
count configuration, though fine-tuning may be necessary
for specific network characteristics.

6.4 Integrated Parameter Optimization

To identify potential parameter interactions, we conducted
factorial experiments with combinations of high-performing
parameter values. Table 13 shows selected results for a 100-
peer network with 20% Byzantine ratio.

The combination of learning rate 0.1, Byzantine penalty
0.3, and 4 partitions provided the best overall performance,
confirming the findings from individual parameter opti-
mization. However, we observed that slight adjustments
to maintain the relative balance between learning rate and
Byzantine penalty preserved good performance, suggesting
that their ratio is more important than absolute values.

Based on these findings, we recommend the following
parameter configurations:

• Small networks (50-200 peers): learning rate 0.1,
Byzantine penalty 0.3, partitions 3-5



12

• Medium networks (201-500 peers): learning rate 0.08,
Byzantine penalty 0.25, partitions 5-7

• Large networks (500+ peers): learning rate 0.05,
Byzantine penalty 0.2, partitions 7-9

7 CONCLUSION AND FUTURE WORK

This paper has presented BRLA-P2P, a novel framework
that integrates learning automata techniques with Byzantine
detection, partition management, and content distribution
strategies to create a robust, efficient P2P system. Through
extensive experimental evaluation, we have demonstrated
that BRLA-P2P achieves superior Byzantine resistance while
maintaining high content distribution performance.

7.1 Key Findings
Our research has yielded several important findings:

1) Integrated approach effectiveness: The synergis-
tic combination of learning automata, Byzantine
detection, and partition management enables sig-
nificantly better performance than traditional ap-
proaches, particularly under high Byzantine ratios.

2) Detection accuracy without false positives: BRLA-
P2P achieves perfect Byzantine detection without
false positives, outperforming comparison systems
that either fail to detect Byzantine nodes or generate
many false positives.

3) Content distribution resilience: Even at 30%
Byzantine ratio, BRLA-P2P maintains 89.5% content
success rate, significantly outperforming BFT-DHT
(58.7%), BAR (35.4%), and Whānau (7.6%).

4) Scalability characteristics: BRLA-P2P shows favor-
able scaling properties, with sub-linear increase in
message overhead as network size grows.

5) Parameter sensitivity insights: Optimal configura-
tions vary with network conditions, but BRLA-P2P
performs well across a range of parameter values,
indicating robustness to configuration variations.

These findings establish BRLA-P2P as a significant ad-
vancement in Byzantine-resistant P2P systems, offering a
compelling balance of security, efficiency, and scalability.

7.2 Limitations
While BRLA-P2P demonstrates strong performance, several
limitations should be noted:

1) Computational complexity: The learning and de-
tection mechanisms introduce additional compu-
tational overhead compared to simpler DHT ap-
proaches.

2) Initial convergence time: BRLA-P2P requires a
learning period to build accurate peer models, lead-
ing to longer initial convergence times.

3) Parameter tuning requirements: While robust to
moderate variations, optimal performance requires
some parameter tuning based on network character-
istics.

4) Simulation vs. real-world deployment: Our eval-
uation is based on simulations; real-world perfor-
mance may vary due to network conditions, latency,
and other practical factors.

7.3 Future Work

Several promising directions for future research emerge
from this work:

1) Enhanced detection for coordinated attacks: Ex-
tending the Byzantine detection mechanisms to bet-
ter identify sophisticated coordinated attacks where
multiple Byzantine nodes collaborate.

2) Dynamic parameter adaptation: Developing mech-
anisms for automatic parameter adjustment based
on observed network conditions, reducing the need
for manual configuration.

3) Domain-specific extensions: Adapting BRLA-P2P
for specific application domains such as content
delivery networks, blockchain systems, and dis-
tributed storage.

4) Real-world implementation and evaluation: Im-
plementing BRLA-P2P in a real P2P system and
evaluating performance under actual network con-
ditions.

5) Integration with identity-based approaches: Com-
bining BRLA-P2P with Sybil-resistant techniques to
address both Byzantine behavior and identity-based
attacks.

In conclusion, BRLA-P2P represents a significant step
forward in Byzantine-resistant P2P systems, offering a com-
prehensive framework that effectively balances security, effi-
ciency, and scalability. Its superior performance, particularly
under high Byzantine ratios, makes it well-suited for appli-
cations requiring robust content distribution in potentially
adversarial environments.
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APPENDIX

This appendix provides additional experimental results that
support the findings presented in the main paper.

.1 BAR Performance Visualization

Fig. 12. BAR success rate versus Byzantine ratio for different network
sizes (Image 3). The U-shaped curve indicates that the BAR model
performs slightly better at 0% and 30% Byzantine ratios than at 20%,
suggesting a non-monotonic relationship between Byzantine presence
and performance. This counterintuitive behavior contrasts with BRLA-
P2P’s more consistent performance across Byzantine ratios.

Figure 12 reveals an unexpected characteristic of the BAR
system: its performance exhibits a U-shaped curve relative
to Byzantine ratio. This suggests that moderate Byzantine
presence (20%) is more disruptive to BAR than either lower
or higher ratios. This counterintuitive behavior may result
from BAR’s incentive mechanisms, which function effec-
tively in predominantly cooperative or predominantly ad-
versarial environments but struggle with mixed conditions.

.2 BFT-DHT Temporal Performance Analysis

Figures 13 and 14 confirm the reliability of our findings
regarding BFT-DHT’s vulnerability to high Byzantine ratios.
Across multiple simulation runs and network sizes, the
system consistently demonstrates diminished performance
as the Byzantine ratio increases, with particularly significant
degradation at the 30% threshold. This pattern is consistent
with the design of BFT-DHT systems, which rely on majority
consensus mechanisms that become increasingly strained as
the proportion of Byzantine nodes approaches one-third of
the network.

Fig. 13. BFT-DHT success rate over time for a 100-peer network with
different Byzantine ratios (Image 4). The figure shows clear stratification
of performance based on Byzantine ratio. Starting with excellent perfor-
mance at 0% Byzantine ratio (above 0.9), the system shows declining
steady-state performance as Byzantine presence increases, with the
30% Byzantine scenario settling at approximately 0.58.

Fig. 14. BFT-DHT success rate over time for a 500-peer network with
different Byzantine ratios (Image 5). In the larger network, the per-
formance stratification pattern remains consistent with the 100-peer
network results. However, the performance gap between the Byzantine
ratio levels narrows slightly, suggesting some scaling effects on the
system’s Byzantine resilience.

Fig. 15. BRLA-P2P success rate over time for a 100-peer network with
different Byzantine ratios (Image 6). The system exhibits exceptional
content distribution performance, maintaining success rates above 0.85
throughout the simulation across all Byzantine ratios. After initial fluctua-
tions, the system stabilizes, with performance actually slightly higher for
0% and 30% Byzantine ratios compared to 10% and 20%.

.3 BRLA-P2P Temporal Performance Analysis

Figures 15 and 16 provide detailed insights into BRLA-
P2P’s temporal performance patterns across different net-
work sizes and Byzantine ratios. The 100-peer network (Fig-
ure 15) demonstrates remarkably stable high performance,
with success rates consistently above 0.85 and minimal
distinction between different Byzantine ratios. This confirms
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Fig. 16. BRLA-P2P success rate over time for a 500-peer network
with different Byzantine ratios (Image 7). In the larger network, all
configurations show a gradual performance decline as the simulation
progresses, though they stabilize after approximately 500 iterations.
The 20% Byzantine ratio maintains a slight performance advantage
throughout the simulation.

the framework’s robust Byzantine resistance in smaller net-
works.

In contrast, the 500-peer network (Figure 16) shows a
gradual performance decline before stabilizing, with the
20% Byzantine ratio configuration maintaining a slight ad-
vantage. This suggests that in larger networks, a moderate
Byzantine presence may actually facilitate more effective
detection and isolation, potentially due to the increased
sample size of Byzantine behavior available for analysis.

.4 Comparative Success Rate Analysis

Fig. 17. BRLA-P2P success rate versus Byzantine ratio for different net-
work sizes (Image 8). This comparative view highlights the framework’s
resilience across Byzantine ratios, with both network sizes showing a
slight U-shaped curve where performance dips at 10% Byzantine ratio
and improves at higher ratios. The consistent gap between the 100-peer
and 500-peer networks indicates a predictable scaling impact.

Figure 17 provides a direct comparison of BRLA-P2P’s
performance across Byzantine ratios for both network sizes.
The consistent gap between the two lines indicates a pre-
dictable scaling impact on performance, while both net-
works show a similar slightly U-shaped pattern with the
best performance at 0% and 30% Byzantine ratios for the
100-peer network, and at 20% for the 500-peer network.
This consistency in response pattern is an important char-
acteristic for real-world deployment, as it enables network
operators to predict system behavior across different threat
levels and network scales.

Fig. 18. BAR system success rate over time for a 100-peer network
with different Byzantine ratios (Image 1). The BAR model exhibits an
immediate, steep performance decline in the early iterations, stabilizing
around a success rate of 0.35 regardless of Byzantine ratio. This pattern
indicates that BAR’s fundamental limitations are inherent to its design
rather than responsive to Byzantine presence.

Fig. 19. BAR system success rate over time for a 500-peer network
with different Byzantine ratios (Image 2). The performance pattern in the
larger network mirrors that of the 100-peer network, further confirming
that BAR’s limitations are algorithmic rather than scale-dependent. The
system maintains approximately the same steady-state performance
level regardless of network size or Byzantine ratio.

.5 BAR System Temporal Performance
Figures 18 and 19 illustrate the temporal behavior of the
BAR system’s content distribution success rate across differ-
ent Byzantine ratios and network sizes. Unlike BRLA-P2P,
which maintains high performance, BAR exhibits a rapid
performance decline during the initial iterations before sta-
bilizing at a relatively low success rate of approximately
0.35. This stabilization occurs regardless of the Byzantine
ratio, further confirming BAR’s insensitivity to changes in
the proportion of malicious nodes and suggesting funda-
mental limitations in its design for content distribution in
Byzantine environments.

.6 Whānau System Performance Analysis
Figures 20 and 21 provide details on Whānau’s temporal
performance in both 100-peer and 500-peer networks. In
both cases, the system demonstrates extremely poor con-
tent distribution performance, with success rates rapidly
declining to below 0.08 across all Byzantine ratios. This
consistent underperformance, regardless of network size or
Byzantine presence, highlights the limitations of approaches
designed primarily for Sybil resistance when applied to
general Byzantine fault tolerance scenarios.

Figure 22 shows Whānau’s performance across differ-
ent Byzantine ratios and network sizes. The system main-



15

Fig. 20. Whānau success rate over time for a 100-peer network with
different Byzantine ratios (Image 9). Despite its specialized design for
Sybil resistance, Whānau exhibits extremely poor content distribution
performance, with success rates rapidly declining to below 0.08 across
all Byzantine ratios. After initial volatility, the system stabilizes but with
minimal successful content distribution.

Fig. 21. Whānau success rate over time for a 500-peer network with
different Byzantine ratios (Image 10). The larger network shows similar
performance patterns to the 100-peer network, with all configurations
converging to success rates below 0.08 after initial fluctuations. This
consistency across network sizes confirms the system’s fundamental
limitations for general Byzantine fault tolerance.

Fig. 22. Whānau success rate versus Byzantine ratio for different net-
work sizes (Image 11). The system shows minimal variation in per-
formance across Byzantine ratios, with slightly better performance in
the 500-peer network compared to the 100-peer network. However,
the overall success rates remain extremely low (below 0.08) across
all configurations, confirming Whānau’s limited effectiveness for general
content distribution in Byzantine environments.

tains consistently poor performance (success rates below
0.08) regardless of Byzantine presence, with the 500-peer
network showing slightly better results than the 100-peer
network. This marginal improvement with scale does not
substantially change the overall assessment that Whānau’s
design, while potentially effective for its specialized purpose
of Sybil resistance, is inadequate for general Byzantine-

resistant content distribution.

Fig. 23. BAR success rate versus Byzantine ratio for different network
sizes (Image 12). The highly similar U-shaped performance curves for
both the 100-peer and 500-peer networks demonstrate the consistency
of BAR’s behavior across different scales. Both curves show optimal
performance at 0% and 30% Byzantine ratios, with a notable dip at 20%,
reinforcing the observation that moderate Byzantine presence creates
particularly challenging conditions for BAR’s incentive mechanisms.

Figure 23 provides additional confirmation of BAR’s
distinctive U-shaped performance pattern relative to Byzan-
tine ratio. The closely aligned curves for both network
sizes demonstrate that this characteristic is consistent across
scales, suggesting a fundamental property of BAR’s design
rather than a network-specific anomaly. The slight perfor-
mance advantage at both the 0% (purely cooperative) and
30% (highly adversarial) scenarios compared to the 20%
(mixed) scenario indicates that BAR’s incentive mechanisms
may be optimized for more homogeneous network behav-
iors rather than mixed-strategy environments.
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